

Monthly Progessive Test

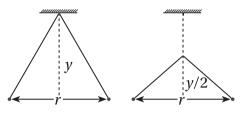
Class: XII

Subject: PCMB

Test Booklet No.: MPT01 Test Date: 2 2 0 4 2 0 2 4

Time: 180 mins Full Marks: 200

Important Instructions:

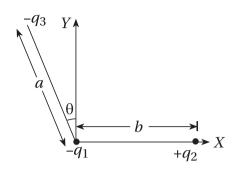

- 1. The Test is of 180 mins duration and the Test Booklet contains 100 multiple choice questions of single correct option only. There are four sections with four subjects. You have to attempt all 100 questions (Candidates are advised to read all 100 questions). Questions 1 to 25 contain Physics, Questions 26 to 50 contain Chemistry, Questions 51 to 75 contain Mathematics, Questions 76 to 100 contain Biology.
- 2. Each question carries 2 marks. For each correct response, the candidate will get 2 marks. There is no negative mark for wrong response. The maximum mark is 200.
- 3. Use Blue / Black Ball point Pen only for writing particulars marking responses on Answer Sheet.
- 4. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Off Line MPT0122042024.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your UID No. anywhere else except in the specified space. Use of white fluid for correction is NOT permissible on the Answer Sheet. **Do not scrible or write on both side discrete bars of Answer Sheet**.
- 8. Each candidate must show on-demand his/her Registration document to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic Calculator/Cellphone is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 13. There is no scope for altering response mark in Answer Sheet.

Space For Rough Works

Physics

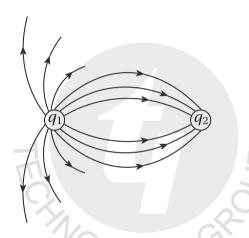
1. Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is r. Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become

 $igotimes \left(\frac{2r}{\sqrt{3}} \right)$

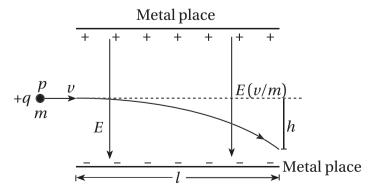

 $\bigcirc \left(\frac{r}{\sqrt{2}}\right)$

- \bigcirc $\left(\frac{r}{3\sqrt{2}}\right)$
- **2.** If two charges q_1 and q_2 are separated with distance 'd' and placed in a medium of dielectric constant K. What will be the equivalent distance between charges in air for the same electrostatic force?
 - \triangle $d\sqrt{K}$
- (B) $K\sqrt{d}$ (C) $1.5d\sqrt{K}$ (D) $2d\sqrt{K}$
- **3.** Two point charges Q each are placed at a distance d apart. A third point charge q is placed at a distance x from mid-point on the perpendicular bisector. The value of x at which charge q will experience the maximum Coulomb's force is:
 - $\triangle x = d$

- (B) $x = \frac{d}{2}$ (C) $x = \frac{d}{\sqrt{2}}$ (D) $x = \frac{d}{2\sqrt{2}}$
- **4.** Charge is distributed within a sphere of radius R with a volume charge density $p(r) = \frac{A}{r^2}e^{-2r/a}$ where A and a are constants. If Q is the total charge of this charge distribution, the radius *R* is:
- $\textcircled{A} \quad a \log \left(1 \frac{Q}{2\pi a A} \right) \qquad \textcircled{B} \quad \frac{a}{2} \log \left(\frac{1}{1 \frac{Q}{2\pi a A}} \right) \qquad \textcircled{C} \quad a \log \left(\frac{1}{1 \frac{Q}{2\pi a A}} \right) \qquad \textcircled{D} \quad \frac{a}{2} \log \left(1 \frac{Q}{2\pi a A} \right)$
- **5.** Two charges, each equal to q, are kept at x = -a and x = a on the x-axis. A particle of mass m and charge $q_0 = \frac{q}{2}$ is placed at the origin. If charge q_0 is given a small displacement (y << a) along the y-axis, the net force acting on the particle is proportional to
 - \triangle y

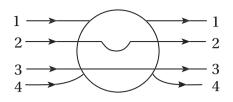

B −*y*

6. Three charges $-q_1$, $+q_2$ and $-q_3$ are place as shown in the figure. The *x*-component of the force on $-q_1$ is proportional to



- **B** $\frac{q_2}{h^2} + \frac{q_3}{a^2} \sin \theta$
- $\bigcirc \frac{q_2}{h^2} + \frac{q_3}{a^2} \cos \theta$ $\bigcirc \frac{q_2}{h^2} \frac{q_3}{a^2} \sin \theta$

7.



- **B** q_2 must be a negative charge
- © Magnitude of $q_1 = 2 \times \text{magnitude of } q_2$ © All of these are correct
- **8.** If h is the vertical displacement of particle at the end, then charge to mass ratio of particle p, q/m =

 \bigcirc $\frac{2v^2h}{El}$

9. A metallic solid sphere is placed in a uniform electric field. Which path, the lines of force follow as shown in figure?

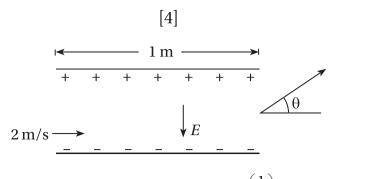
A) 1

B 2

© 3

- **10.** An infinite sheet carrying a uniform surface charge density σ lies on the xy-plane. The work done to carry a charge q from the point $\vec{A} = a(\hat{i} + 2\hat{j} + 3\hat{k})$ to the point $\vec{B} = a(\hat{i} - 2\hat{j} + 6\hat{k})$ (where a is a constant with the dimension of length and ϵ_0 is the permittivity of free space) is

- **11**. An early model for an atom considered it to have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge upto a radius R. The atom as a whole is neutral. The electric field at a distance r from the nucleus is (r < R)

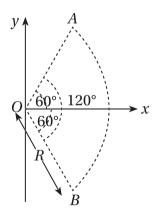

- 12. A spherically symmetric charge distribution is considered with charge density varying

$$\rho(r) = \begin{cases} \rho_0 \left(\frac{3}{4} - \frac{r}{R} \right) & \text{for } r \le R \\ \text{Zero} & \text{for } r > R \end{cases}$$

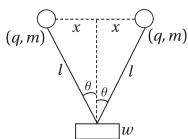
Where, r(r < R) is the distance from the centre O (as shown in figure). The electric field at point P will be

- $\textcircled{A} \ \frac{\rho_0 r}{4\epsilon_0} \bigg(\frac{3}{4} \frac{r}{R} \bigg) \qquad \qquad \textcircled{B} \ \frac{\rho_0 r}{3\epsilon_0} \bigg(\frac{3}{4} \frac{r}{R} \bigg) \qquad \qquad \textcircled{C} \ \frac{\rho_0 r}{4\epsilon_0} \bigg(1 \frac{r}{R} \bigg) \qquad \qquad \textcircled{D} \ \frac{\rho_0 r}{5\epsilon_0} \bigg(1 \frac{r}{R} \bigg)$
- **13.** A uniform electric field E = (8m/e) V/m is created between two parallel plates of length 1 m as shown in figure, (where m = mass of electron and e = charge of electron). An electron enters the field symmetrically between the plates with a speed of 2 m/s. The angle of the deviation (θ) of the path of the electron as it comes out of the field will

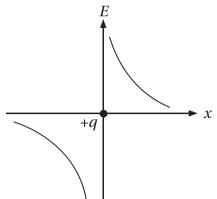
- \triangle tan⁻¹(4)
- **(B)** $tan^{-1}(2)$
- \bigcirc $\tan^{-1}\left(\frac{1}{3}\right)$
- \bigcirc tan⁻¹(3)
- **14.** A uniformly charged disc of radius R having surface charge density σ is placed in the xy plane with its center at the origin. Find the electric field intensity along the z-axis at a distance Z from origin

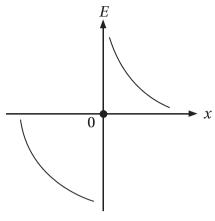

$$E = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{Z}{\left(Z^2 + R^2 \right)^{1/2}} \right)$$

$$\mathbf{B} \quad E = \frac{\sigma}{2\varepsilon_0} \left(1 + \frac{Z}{\left(Z^2 + R^2 \right)^{1/2}} \right)$$

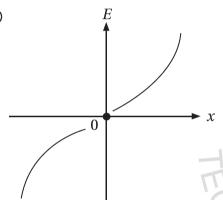

$$E = \frac{2\varepsilon_0}{\sigma} \left(\frac{1}{\left(Z^2 + R^2\right)^{1/2}} + Z \right)$$

15. Figure shows a rod AB, which is bent in a 120° circular arc of radius R. A charge (-Q) is uniformly distributed over rod AB. What is the electric field **‡** at the centre of curvature O?

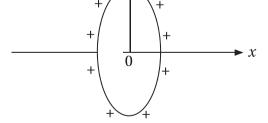

16. Two identical He filled spherical balloons each carrying a charge q are tied to a weight W with strings and float in equilibrium. Then the magnitude of charge q_i assuming that the charge on each balloon acts as if it were concentrated at the center.


- (A) $\sqrt{8 w \tan \theta \pi} x$ (B) $\sqrt{4 \pi w \tan \theta} x$
- $\bigcirc \sqrt{2\pi w \tan \theta} x$

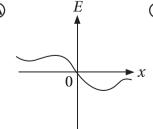
17. Select the correct graphical variation of \vec{E} on *x*-axis due to a point positive charge.


(A)

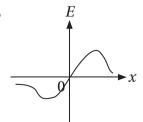
 $^{\odot}$

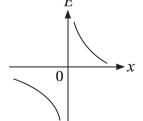


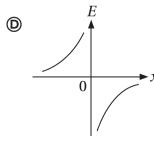
©



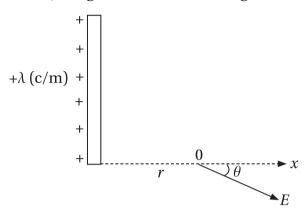
None of these


18. Select the correct graphical variation of \vec{E} on *x*-axis due to a ring shaped conductor carries a total charge Q uniformly distributed in it.


(A)



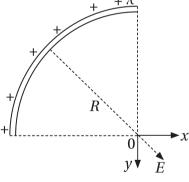
lacksquare



©

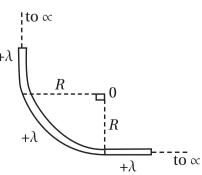
19. The magnitude of angle (θ) that E (N/C) makes with x-axis, at the end of positively charged (line charge λ c/m) long wire as shown in figure is

A 30°

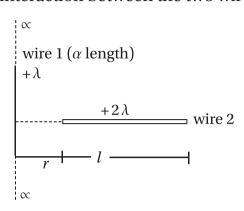

B 60°

© 45°

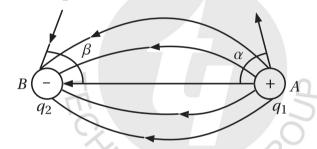
- © 90°
- **20**. The electric field caused by a disc of radius R with a uniform positive surface charge density σ at a point on the axis of disc at a distance x from its center. Suppose we keep increasing the radius R of the disc, simultaneously adding charge so that the surface charge density σ is constant. Then $E_{\rm v}$ =


- (D) (I)
- **21.** For a quarterly circular ring having linear charge density λ (c/m)

 - $|\vec{E}_v| > |\vec{E}_v|$
 - \bigcirc $|\vec{E}_{v}| < |\vec{E}_{v}|$
 - None of these



- **22.** A long wire with uniform charge density λ is bent in configuration as shown in the figure given below. The net electric field at 0 is
 - $\triangle \frac{\lambda}{4\pi\epsilon_0 R}$


- None of these

23. The force of interaction interaction between the two wires

- **24.** A line of force emanates from q_1 at an angle α with the line AB, then the angle B, with which it will terminate at $-q_2$. Select the correct relation.

 $\sin \frac{\beta}{2} = \left(\sin \frac{\alpha}{2}\right) \sqrt{\frac{q_1}{q_2}}$

 $\bigcirc \beta = \alpha \sqrt{\frac{q_1}{q_2}}$

- None of these
- 25. A non-conducting semicircular wire is shown above. The dipole moment is

- $\triangle 2\lambda r^2$

 \bigcirc $4\lambda r^2$

 \bigcirc λr

Chemistry

26.	$200~\mathrm{ml}~0.1~\mathrm{N}~\mathrm{NaOH}$ solution is added to $50~\mathrm{ml}~0.01~\mathrm{N}~\mathrm{KOH}$ solution. What is the final concentration in normality of the mixture solution ?				
	(A) 0.062 N	B 0.072 N	©	0.082 N	© 0.092 N
27.	Which of the followi	ng is not a good solve	nt f	or the ionic compo	ounds?
	♠ Liquid NH ₃	B Liquid H ₂ S	©	${\rm LiquidSO_2}$	O CCl ₄
28.	What is the concentration water?	tration when 3.6 gm	C ₆ H	$I_{12}O_6 [MW = 180]$	is dissolved in 200 gm
	(A) 0.1 m	® 0.01 m	©	0.2 m	0 0.02 m
29.	constant is 150 torr a acetone?	and mole fraction of a	ceto	one is 0.12. What is	oform and Henry's law the vapour pressure of
	A 1.8 torr	® 0.18 torr	(C)	18 torr	© 9 torr
30.	B decrease of partiaC increase of rate o	oxia occurs due to al pressure of oxygen i al pressure of carbon of f decomposition of ha al pressure of nitrogen	diox em	ide in human bloc oglobin in human	
31.	If a strong intermol vapour pressure ② Decreases © At first increases	MDIP	B	is there between Increases At first decreases	liquid molecules then then then increases
32.	2 mole volatile solute is added to 18 mole volatile solvent. What will be the final vapou				will be the final vapour
	pressure (in mm of Hg) of the system when $p_{solute}^0 = 200 \text{ mm}$ of Hg and $p_{solvent}^0 = 600 \text{ mm}$ of Hg?				
	S 540S 570		B D	No option is corre	ect
33.			ma		Water gave the boiling $(K_b)_{H_2O} = 0.52 \text{ K.Kg.mol}^{-1}$ (D) 275
34.		$_{\rm H_2O} = 1.86 \rm K. Kg. mol^{-1}$?	tion	, formed by mixing	g 20 gm urea (MW = 60)
	(A) 270.52 K	B 271.48 K	©	271.52 K	② 270.48 K

- **35.** An aqueous solution of methanol in water has the vapour pressure
 - A Less than water

B More than water

© Equal to water

- D Less than methanol
- **36.** When sugar is added to water then boiling point of the solution is higher than that of pure water. This is due to
 - A Increase in the escaping character of water
 - ® Increase in the extent of hydrogen bonding in the solvent
 - © Increase in the solute solvent interaction in the system
 - Decrease in the conductivity of water

QUESTION NUMBER 37 TO 40 ARE ASSERTION-REASON TYPE. SELECT THE CORRECT ANSWER AMONG THE GIVEN OPTIONS

OPTION A: Assertion and reason both are correct and reason is the correct explanation of assertion

OPTION B: Assertion and reason both are correct and reason is not the correct explanation of assertion

OPTION C: Assertion is correct but reason is wrong

OPTION D: Assertion is wrong but reason is correct

- **37**. **Assertion :** Higher the value of temperature, osmotic pressure value is lower **Reason :** Osmotic pressure value depends on the number of solute particles
- **38. Assertion :** Positive deviation from Raoult's law is observed when H_2SO_4 is added to water

Reason: On mixing water and H₂SO₄ forms strong hydrogen bonding with each other

- **39. Assertion :** Ammonia is more soluble in water than C_2H_6 at a constant temperature **Reason :** Molar mass of ammonia is lower than C_2H_6
- **40. Assertion :** Osmotic pressure increases with increasing concentration but decreases with inceasing temperature

Reason: Osmotic pressure is an intensive property at a particular temperature

- **41.** 5 gm solute is dissioved in 500 gm water in each case at same temperature. The correct order of vapour pressure is
 - $\bigcirc C_{12}H_{22}O_{11} > C_6H_{12}O_6 > CO(NH_2)_2$
- **®** $CO(NH_2)_2 > C_6H_{12}O_6 > C_{12}H_{22}O_{11}$
- © $C_{12}H_{22}O_{11} > CO(NH_2)_2 > C_6H_{12}O_6$
- \bigcirc CO(NH₂)₂ > C₁₂H₂₂O₁₁ > C₆H₁₂O₆

42. 3.42 gm $C_{12}H_{22}O_{11}$ (MW = 342) is added to 180 gm water. Mole fraction of sugar is 9.99×10^{-x} . What is the value of 'x'?

43. What mass of glucose (MW = 180) in gm that would be dissolved in 50 gm of water in

order to produce the same lowering of vapour pressure as is produced by dissolving 1

© 2

© 5

B 3

A 4

	gm of urea (MW = 6 (A) 4	0) in the same quantity (B) 3	y of water ? © 2	© m
44.	What is the osmotic	c pressure of a solution	n in atm at 300 K whi	ch is formed by adding = 0.08 lit-atm.K ¹ .mol ⁻¹ ?
	(A) 1.72	B 1.82	© 1.62	1.92
45.	If molality of the dil	lute solution is double	d then the value of m	nolal elevation constant
	A become half		B become double	
	© become 4 times		nemain unchange	ed
46.	benzene.Molal elev given by	ation constant of benz	ene is K _b then elevati	is dissolved in 250 gm on in its boiling point is
				$\bigcirc \left[\frac{K_{b}.Y}{M}\right]$
47.	A solution weighing mass of solute is 'c'	- / / / / / / / / / / / / / / / / / / /	.' What will be the mo	lar mass of solute if the
48.	Mole fraction of a gi	iven sample of ${\rm I_2}$ in ${\rm C_6I}$	H_6 (MW = 78) is 0.2. The	ne molality of I_2 in C_6H_6
	(A) 0.16	B 0.32	© 1.6	② 3.2
49.	-	ution of urea at 2.4 atm	-	m at 25°C is mixed with ure. What is the osmotic
	② 2.54 atm	B 1.96 atm	© 1.68 atm	② 2.24 atm
50.		ution is isotonic with 0 dissociation of Na_2SO_4		on at 298 K. What is the
	A 90%	B 80%	© 75%	© 85%
Tech	no India Group ● DN-2	25 • Sector-V • Kolkata		

Mathematics

51.	If $\cos^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ then find the value of $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$	$^{1}y - \sin^{-1}$	^{1}x
-----	---	---------------------	---------

 $\triangle \frac{\pi}{2}$

 \bigcirc $\frac{\pi}{3}$

52. If $\sin^{-1} \frac{x}{5} + \csc^{-1} \frac{5}{4} = \frac{\pi}{2}$, then one value of *x* is

A 1

B 4

© 3

© 5

53. The value of $\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3$ is

(A) 0

 $\bigcirc B \frac{\pi}{4}$

© π

54. The principal value of $\cos^{-1}\left(-\sin\frac{7\pi}{6}\right)$

 $\bigcirc \frac{\pi}{3}$

None of these

55. The value of $\cot^{-1} 3 + \csc^{-1} \sqrt{5}$ is

 $\bigcirc \frac{\pi}{4}$

None of these

56. Which of these is not a type of relation?

A Reflexive

B Surjective

© Symmetric

Transitive

57. If $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ \forall \ x_1, x_2 \in A$ then the function $f: A \to B$ is

A One-one

One-one onto

© Onto

Many one

58. What type of a relation is $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ on the set $A = \{1, 2, 3, 4\}$

A Reflexive

B Transitive

© Symmetric

None of these

59. The range of function $f(x) = \sqrt{(x-1)(3-x)}$ is

(A) [1, 3]

B [0, 1]

© [-2, 2]

None of these

60. The function $f(x) = \log(x^2 + \sqrt{x^2 + 1})$ is

A Even function

Odd function

© Both (A) and (B) D None of these

61. Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$ Then, the number of onto functions from E to F is

(A) 14

B 16

© 12

© 8

62.	Let $A = \{1, 2, 3, 4, \dots, n\}$ How many bijective function $f: A \rightarrow A$ can be defined?				
			©	<u>n</u>	(D) n
63.	If $A = \{1, 2, 3\}$, $B = \{6, of a function is f?$	7, 8} and $f: A \rightarrow B$ is a	fun	ction such that $f(x)$	= x + 5 then what type
	Many-one onto	B Constant function	n©	One-one onto	Into
64.	Let the function 'f' h	be defined by $f(x) = 5x$	c ² +	$2 \forall x \in R$, then 'f' i	S
	Onto function		B	One-one onto fur	nction
	© One-one into fun	nction	(D)	Many-one into fu	nction
65.	If f(x) + 2f(1-x) = x	$x^2 + 2 \ \forall \ x \in R$, then $f(x)$) =		
	(A) $x^2 - 2$	® 1	©	$\frac{1}{3}(x-2)^2$	None of these
66.	The domain of sin ⁻¹	$(\log_3(x/3)]$ is			
	(1, 9]	B [−1, 9]	©	[-9, 1]	◎ [-9, -1]
67.	What type of relation	n is 'less than' in the s	et o	f real numbers?	
	Only symmetric	Only transitive	©	Only reflexive	© Equivalence
68.	Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as a R b if a congruent to $b \forall a, b \in T$. Then R is				
	Reflexive but-not transitive				t symmetric
	© Equivalence	MONP	0	None of these	
69.	The maximum num	ber of equivalence rel	atio	ons on the set $A = \{1$	1, 2, 3} are
	A 1	B 2	©	3	© 5
70.	Let $A = \{1, 2, 3\}$ and C	consider the relation <i>R</i>	= {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then
	A Reflexive but not	symmetric	lacksquare	Reflexive-but not	transitive
	© Symmetric and to	ransitive	D	Neither symmetri	ic, nor transitive
71.		5 elements and the senappings from A to B is		contains 6 elemen	nts, then the number of

© 0

© 1012

72. If $f(x) = \frac{4^x}{4^x + 2}$, the value of $f\left(\frac{1}{2025}\right) + f\left(\frac{2}{2025}\right) + f\left(\frac{3}{2025}\right) + \dots + f\left(\frac{2023}{2025}\right) + f\left(\frac{2024}{2025}\right)$

None of these

② 2024

Techno India Group • DN-25 • Sector-V • Kolkata

B 120

B 1011

A 720

(A) 1000

73.	The value of cos{tan	$-1\left(\tan\frac{15\pi}{4}\right)$ is
		B $-\frac{1}{\sqrt{2}}$
74.	The value of $\tan \left\{ 2\tan \left(\frac{1}{2} \right) \right\}$	$n^{-1}\frac{1}{5}-\frac{\pi}{4}$
	(A) 0	® 1
	m · · 1 1	c · -1 (·

- © $\frac{7}{17}$
 - None of these

None of these

- **75.** The principal value of $\sin^{-1} \left[\cos \left(\sin^{-1} \frac{\sqrt{3}}{2} \right) \right]$ is

© $-\frac{\pi}{3}$

© 1

None of these

Biology

- **76.** Which of the following process is not a part of the pollen-pistil interaction? A Recognition of compatible pollen B Growth of a pollen tube © Entry of pollen tube into the ovule Triple fusion **77.** Pollination by snails is called _ Anemophily B Hydrophily © Malacophily © Entomophily **78.** The coconut water we drink is the © Mesocarp B Endocarp Endosperm Perisperm **79.** Outbreeding devices in plants are mechanisms which _ A Promote cross pollination B Prevent cross pollination © Promote self pollination • Promote both types of pollination **80.** A typical anther is _____ B Dithecous with six microsporangia Dithecous with four microsporangia © Tetrathecous with four microsporangia © Trithecous with three microsporangia **81.** Entry of pollen tube through the micropyle is called _____ None of the above Chalazogamy B Porogamy © Chasmogamy
- Ovule

Megaspore mother cell

© Embryo sac

Nuclellus

82. Female gametophyte of angiosperms is represented by _____

83.	Select the mismatched pair						
		B	Megasporangiun	n — nucellus			
	© Pollen grain — male gametophyte	(Pollen grain — n	nale gamete			
84.	A plant that can produce both chasmogar	nou	s and cleistogamo	ous flower is			
	A Papaya B Viola		Water lily	Maize			
85. Choose the correct sequence of A, B, C and D from the diagram give				n given below			
	A—Primary endosperm cell (PEC)						
	B—Degenerating antipodals			A			
	C—Primary endosperm nucleus (PEN)		(\)			
	D—Degenerating synergids			Zygote 6			
	A—Degenerating antipodals						
	B—PEC			D —			
	C—Degenerating synergids			в 🕕 (•)			
	D—PEN						
	© A—Degenerating synergids						
	B—PEN						
	C—Degenerating antipodals		75				
	D—PEC			C———			
	© A—PEN		2-	9			
	B—PEC	10					
	C—Degenerating synergids						
	D—Degenerating antipodals						
86.	What happens to the integuments around	l the	e ovule after fertilis	sation?			
	They turn to the fruit stalk	B					
	© They dry and fall off	(D)	They turn to seed	•			
87.	Scutellum represents the						
	Endosperm of monocot seeds	B	Cotyledons of di	cot seeds			
	© Cotyledon of monocot seeds	(Embryo of dicot	seeds			
88.	Choose the correct equation						
	Male gamete + Female gamate → Ember	ryo					
(n) (n) $(2n)$							
	B Male gamete + Female gamate → Zygo						
	$(n) \qquad \qquad (n) \qquad \qquad (2n)$)					

	© Secondary nucleus (n)	+ Male gamate \rightarrow F (n)	Endosperm $(2n)$		
		+ Male gamate \rightarrow E (2n)			
89.	Select the correct sta	atement about plants	with closed flowers		
	(A) The flowers are call	alled chasmogamous	and show self pollin	nation	
	The flowers are calculated as a second c	alled cleistogamous a	and show cross polli	nation	
		alled cleistogamous a	and show self pollina	ation	
	None of the abov	e			
90.	Choose the aquatic	plant which does not	use water for pollin	ation	
	Water hyacinth	B Vallisneria	© Hydrilla	Sea grass	
91.	The nature of intine	is			
	Sporopollenin co	ontaining	B Pectocellular		
	© Starchy		© Cellulosic		
92.	_	•		per and beet is called	
	A Pericarp	Perisperm	© Epicarp	Suspensor	
93.	_	onsidered a contamii	-		
0.4	♠ Polygonum	B Hydrilla		us © Parthenium	
94.	. The microscopic pollen grains of the past are preserved as fossils. Which compound makes this possible?				
		B Pectocellulose	© Cellulose	D Lignin	
95.		n embryo sac at matu		0	
	(A) 8-nucleate and 7		B 8-nucleate and	l 8-celled	
	© 9-nucleate and 9	-celled	9-nucleate and	d 8-celled	
96.	In most angiosperm	is, pollen grains are sh	ned at the		
	♠ 4-celled stage	B 2-celled stage	© 6-celled stage	⑤ 5-celled stage	
97.	Emasculation is don		0 -		
	Prevent cross pol		Brownt bagging		
00	© Prevent self pollin		Prevent bagging	ig of flowers	
98.	Choose the correct s	statement embryo in a seed is ca	alled nolvembryony		
		able seeds are those o			
	© Apomixis is a kind of asexual reproduction which mimics sexual reproduction				
	-	of mango show apom			

- **99.** Banana shows____
 - A Polyembryony

- B Production of seeds without fertilisation
- © Fruit formation from thalamus
- Parthenocarpy
- **100.** Choose the correct developmental sequence____
 - A Pollen mother cell \rightarrow Sporogenous tissue \rightarrow Microspore tetrad \rightarrow Male gametes \rightarrow Pollen grain
 - 8 Pollen grain \rightarrow Sporogenous tissue \rightarrow Pollen mother cell \rightarrow Microspore tetrad \rightarrow Male gametes
 - $\textcircled{\textbf{C}}$ Sporogenous tissue \rightarrow Pollen mother cell \rightarrow Microspore tetrad \rightarrow Pollen grain \rightarrow Male gametes
 - \bigcirc Pollen mother cell \rightarrow Sporogenous tissue \rightarrow Male gametes \rightarrow Pollen grain

Space For Rough Works

Space For Rough Works

