

Monthly Progessive Test (Solution)

Class: X

Subject: PCMB

Test Booklet No.: MPT02

Test Date: 1 0 0 5 2 0 2 4

Physics

1. **B**

Denser to rarer

2. A

Rarer to denser

3. ©

Wavelength and nature of medium.

4. ©

Among them water is rarer medium.

5. ©

$$n_g = \frac{C_0}{C_g} = \frac{3}{2}$$
 $n_w = \frac{C_0}{C_w} = \frac{4}{3}$

$$_{
m air} n_{
m water} \times _{
m water} n_{
m glass} \times _{
m g} n_{
m air} = 1$$

$$_{\text{water}} n_{\text{glass}} = \frac{9}{8}$$

6. D

$$\mu_V > \mu_{R'}$$
 apparent depth = $\frac{\text{Real depth}}{\mu_g} = \frac{2}{3} \cdot \text{real thickness}$

Similarly in pond (water
$$r_i = \frac{4}{3}$$
)

app.depth =
$$\frac{\text{Real depth}}{\mu}$$
 $\Rightarrow 15 = \frac{20}{\mu}$ $\Rightarrow \mu = \frac{4}{3}$

- 8. ⁽¹⁾
- 9. B
- **10**. (A)
- **11**. **B**

$$\frac{3}{2} = \frac{3 \times 10^8}{y \times 10^8} \implies y = 2$$

- 12. A
 - as $air \rightarrow glass \rightarrow air$
- 13. ©

i = e refer ans Q.12

14. ©

refer Q.11

15. **(D)**

C (in diamond) =
$$\frac{3 \times 10^8}{2.42}$$
 = 1.24×10⁸ m/s

16. (A)

$$60 - 40 = 20 \text{ cm}$$

17. **B**

$$45^{\circ} - 30^{\circ} = 15^{\circ}$$

18. ⁽¹⁾

As
$$R = 2f$$

19. [®]

$$D = 180^{\circ} - 2i = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

20. ©

independent of medium.

21. ©

$$\frac{\mu_b}{\mu_a} \times \frac{\mu_c}{\mu_b} \times \frac{\mu_a}{\mu_c} = 1$$

22. ©

Shift =
$$t \left(1 - \frac{1}{\mu} \right) = 3 \times \left(1 - \frac{2}{3} \right) = 1 \text{ cm}$$

23. A

Real depth = $\mu \times \text{apparent depth} = \frac{3}{2} \times 2 = 3 \text{ cm}$

$$\therefore$$
 3 cm + 3 cm = 6 cm

24. ^(D)

$$\frac{3}{2} \cdot \sin i = \frac{4}{3} \cdot \sin 90^{\circ} \quad \sin i = \frac{8}{9}$$

25. ©

Alternate angle

Chemistry

26. B

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 \uparrow + H_2O$$

$$NaHCO_3 + HCl \longrightarrow NaCl + CO_2 \uparrow + H_2O$$

(Na₂CO₃—sodium carbonate and NaHCO₃—sodium bicarbonate)

27. ©

- 28. B
- **29. (A)**

NaOH is a strong base. Hence, pH of the medium will be more than 7

30. ®

$$Zn + H_2SO_4$$
 (dilute) $\longrightarrow ZnSO_4 + H_2$

31. B

HCl is an acid hence it turns blue litmus red

32. **(D)**

Consider the pH scale given in the hint of question number 27

33. ©

$$Zn + 2NaOH \xrightarrow{\Delta} Na_2ZnO_2 + H_2 \uparrow$$
(sodium zincate)

34. ©

$$\begin{split} & \text{CH}_3\text{COOH (weak acid)} + \text{NaOH (strong base)} \longrightarrow \text{CH}_3\text{COO}^-\text{Na}^+ + \text{H}_2\text{O} \\ & 2\text{KOH (strong base)} + \text{H}_2\text{SO}_4 \text{ (strong acid)} \longrightarrow \text{K}_2\text{SO}_4 + 2\text{H}_2\text{O} \\ & 2\text{NH}_4\text{OH (weak base)} + \text{H}_2\text{SO}_4 \text{ (strong acid)} \longrightarrow (\text{NH}_4)_2 \text{SO}_4 + 2\text{H}_2\text{O} \\ & \text{CH}_3\text{COOH (weak acid)} + \text{NH}_4\text{OH (weak base)} \longrightarrow \text{CH}_3\text{COONH}_4 + \text{H}_2\text{O} \end{split}$$

35. **©**

Milk of magnesia is an antacid contains $Mg(OH)_2$

36. ©

Indicators are the compounds, which show different colours in acidic, basic and neutral mediums.

37. ©

Phenolphthalein shows following colour changes in different mediums

Acidic medium - colourless, basic medium - pink, neutral medium - colourless

38. **(A)**

Metallic oxide reacts with acid to form salt and water. Examples are given below

$$Na_2O + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$$

 $CaO + 2HCl \longrightarrow CaCl_2 + H_2O$

39. **©**

Curd contains lactic acid and that can react slowly with the inner wall of the metallic container and hence the food can gradually becomes poisonous.

40. B

In aqueous medium, NaHCO₃ breaks in the following fashion

$$NaHCO_3 + H_2O \longrightarrow NaOH(strong base) + H_2CO_3$$
 (weak acid)

So, the medium is basic hence it can turn red litmus into blue

41. (D)

Exothermic reaction are those, where heat is released during the reaction

42. A

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

In this reaction, both compounds are combining with each other and a single compound is formed

43. B

CaCO₃ is a very stable compound and strong heating causes the decomposition of the compound very easily. Related equation is given below:

$$CaCO_3$$
 (solid) \xrightarrow{heat} CaO (solid) $+ CO_2 \uparrow$

44. ©

Related equation is

$$BaCl_2(aqueous) + Na_2SO_4(aqueous) \longrightarrow 2NaCl(aqueous) + BaSO_4 \downarrow (white)$$

45. ©

Related equations are given below
$$4H_2O \xrightarrow{\text{electrolysis in} \atop \text{acidic medium}} 4H^+ + 4OH^-$$

$$4OH^- \longrightarrow 2H_2O + O_2 \uparrow + 4e^-$$

$$4H^+ + 4e^- \longrightarrow 2H_2 \uparrow$$

So, the correct products are hydrogen gas and oxygen gas

46. A

Rancidity is prevented by adding some anti-oxidants in foods

47. B

Rancidity is a chemical process and the rate of chemical reaction decreases by decreasing temperature.

48. A

$$CH_3COOH \longrightarrow CH_3COO^- + H^+$$

As, only one H+ ion is released so, it is a monobasic acid

49. ®

Related equation is

$$2KOH + H_2SO_4 \longrightarrow K_2SO_4 + 2H_2O$$

50. A

HCOOH is formic acid or methanoic acid

Mathematics

$$\frac{3}{6} = \frac{-1}{-K} = \frac{8}{16} \Rightarrow \frac{1}{2} = \frac{1}{K} = \frac{1}{2} \Rightarrow K = 2$$

$$a-b=2$$

$$a+b=4$$

$$2a=6$$

$$\Rightarrow a=3 \therefore b=1$$

Let the two digit number be 10x + y.

$$\therefore x + y = 9$$

Again,
$$10x + y + 27 = 10y + x$$

$$\Rightarrow 9x - 9y = -27$$

$$\Rightarrow x - y = -3$$

$$x + y = 9$$

$$\frac{x-y=-3}{2x=6}$$

$$x = 3$$
 \therefore $y = 6$

$$\therefore$$
 The number = 36

$$\frac{1}{3} = \frac{2}{K} \Longrightarrow K = 6$$

Intersecting or coincident

56. ®

Area = $\frac{1}{2} \times 6^3 \times 6$ sq. units = 18 sq. units

57. ®

$$\frac{2}{4} = \frac{3}{K} = \frac{5}{10} \Rightarrow \frac{3}{K} = \frac{1}{2} \Rightarrow K = 6$$

58. B

$$x + Ky = 5$$

$$2 + K = 5 \Rightarrow K = 3$$

59. ©

$$\frac{7}{3} \neq \frac{-3}{\frac{K}{7}} \Rightarrow \frac{7}{3} \neq \frac{-21}{K} \Rightarrow K \neq -9$$

60. A

Let father's age be *x* years and son's age be *y* years.

$$\therefore x + y = 65$$

$$2(x - y) = 50 \Rightarrow x - y = 25$$

$$x + y = 65$$

$$x - y = 25$$

$$2x = 90$$

$$x = 45$$
 : $y = 20$

- ∴ Age of father = 45 years
- 61. ©

$$\frac{x+1}{y+1} = \frac{4}{5} \Longrightarrow 5x + 5 = 4y + 4$$

$$\frac{x-5}{y-5} = \frac{1}{2} \Rightarrow 2x-10 = y-5$$

$$\Rightarrow 2x-y=5$$

$$5x-4y=-1$$

$$\frac{8x-4y=20}{-3x=-21}$$

$$x=7 \therefore \text{ fraction } = \frac{7}{9}$$

$$\therefore y = 9$$

62. B

Let cost of one chair be \overline{x} and cost of one table be \overline{y}

$$3x + 2y = 1850$$

$$5x + 3y = 2850$$

$$9x + 6y = 5550$$

$$10x + 6y = 5700$$

$$-x = -150$$

$$x = 150$$

$$\therefore 2y = 1400 \Rightarrow y = 700$$

$$\therefore x + y = 150 + 700 = 850$$

63. B

$$x + \frac{y}{2} = 5, \quad \frac{x}{2} + y = \frac{11}{2}$$

$$2x + y = 10, \quad x + 2y = 11$$

$$4x + 2y = 20$$

$$x + 2y = 11$$

$$3x = 9$$

$$x = 3 \quad \therefore \quad y = 4$$

$$\frac{2}{x} + \frac{3}{y} = \frac{9}{xy}, \quad \frac{4}{x} - \frac{9}{y} = \frac{3}{xy}$$

$$\Rightarrow 2y + 3x = 9 \quad 4y - 9x = 3$$

$$\Rightarrow 4y + 6x = 18$$

$$4y - 9x = 3$$

$$x = \frac{\cancel{5}}{\cancel{15}} = 1$$

$$\therefore y = 3$$

$$\frac{x}{a} = \frac{y}{b}, ax + by = a^2 + b^2$$

$$\Rightarrow bx = ay \qquad \Rightarrow a^2x + aby = a(a^2 + b^2)$$

$$\Rightarrow bx - ay = 0 \qquad b^2x - aby = 0$$

$$(a^2 + b^2)x = a(a^2 + b^2)$$

$$x = a$$

$$\therefore y = b$$

Let
$$\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}$$
..... $\infty = x$
 $\Rightarrow x^2 = 3\sqrt{3\sqrt{3\sqrt{3}}}$ ∞
 $\Rightarrow x^2 = 3x$
 $\Rightarrow x = 3$

67. A

$$\sqrt{14+6\sqrt{5}} + \sqrt{14-6\sqrt{5}}$$

$$= \sqrt{(3+\sqrt{5})^2} + \sqrt{(3-\sqrt{5})^2}$$

$$= 3+\sqrt{5}+3-\sqrt{5}=6$$

$$8 = 2^3$$
, $15 = 3 \times 5$, $20 = 2^2 \times 5$, $22 = 2 \times 11$

$$\therefore$$
 LCM = $8 \times 3 \times 5 \times 11$

:. Least perfect square number = $8 \times 2 \times 3 \times 3 \times 5 \times 5 \times 11 \times 11 = 435600$

$$= x^{2}(3x+1) - 2x(3x+1) - 3(3x+1)$$
$$= (3x+1)(x^{2} - 2x - 3)$$
$$= (3x+1)(x-3)(x+1)$$

∴ other zeroes are 3, -1

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

$$\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta) = \frac{c}{a}\left(\frac{-b}{a}\right) = \frac{-bc}{a^2}$$

$$\alpha^2\beta \times \alpha\beta^2 = \alpha^3\beta^3 = \frac{c^3}{a^3}$$

:. Quadratic polynomials are

$$K\left[x^{2} + \frac{bc}{a^{2}}x + \frac{c^{3}}{a^{3}}\right]$$

$$\Rightarrow \frac{K}{a^{3}}(a^{3}x^{2} + abcx + c^{3})$$

 \therefore a quadratic polynomial = $a^3x^2 + abcx + c^3$

71. ©

$$\frac{3}{K} = \frac{5}{10} \Rightarrow K = 6$$

$$\frac{2}{a+b} = \frac{3}{2a-b} = \frac{7}{21} = \frac{1}{3}$$

$$\Rightarrow a+b=6, \quad 2a-b=9$$

$$\frac{a+b=6}{3a=15}$$

$$a=5$$

$$\therefore b=1$$

$$3x + 2y = 13xy$$
, $4x - 5y = 2xy$
 $\Rightarrow \frac{3}{y} + \frac{2}{x} = 13$, $\frac{4}{y} - \frac{5}{x} = 2$

$$\Rightarrow \frac{15}{v} + \frac{10}{x} = 65, \ \frac{8}{v} - \frac{10}{x} = 4$$

Adding,
$$\frac{23}{y} = 69 \Rightarrow y = \frac{1}{3}$$

$$\therefore 9 + \frac{2}{x} = 13 \implies x = \frac{1}{2}$$

74. ©

$$\frac{3}{6} = \frac{-5}{-10} \neq \frac{-11}{-7}$$

$$\Rightarrow \frac{1}{2} = \frac{1}{2} \neq \frac{11}{7}$$

75. B

$$3x + 4y = 5$$
, $x + 2y = 2$

$$2x + 4y = 4$$

$$2x+4y=4$$

$$x = 1 \therefore 2y=1$$

$$y = \frac{1}{2}$$

$$\therefore x + y = \frac{3}{2}$$

76. ®

Trachea

77. **(A**)

Absorb carbon dioxide present in the flask

78. ©

Larynx

79. **B**

Larynx

80. B

Xylem

81. ®

All of the above

82. [©]

All of the above

83. ©

Glucose

Glucose is broken down in living cells, with or without oxygen, to release energy.

84. A

Pulmonary respiration

85. ®

Alveoli

The thinness of the alveolar walls and of the surrounding blood capillaries facilitate the exchange.

86. ©

Bronchi

87. ©

120 days

88. ©

Capillaries

89. **©**

WBCs

90. ©

Serum

91. ®

Bile

92. ©

Saprotrophs

93. B

Gall bladder

94. ®

Holozoic

Nutrition occurs through the sequential steps – Ingestion, Digestion, Absorption, Assimilation and Egestion

95. **(A)**

6

Equation of photosynthesis.

96. B

Oesophagus

Oesophagus is a part of the digestive system.

97. ®

Lactic acid

98. ©

Blood pressure

99. B

2

100. ®

Left ventricle

To be able to pump blood with a huge force into aorta to reach all parts of the body, simultaneously